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Abstract. A non perturbative approach is used to solve the problem of a rigid linear molecule with both
a permanent dipole moment and a static dipole polarizability, in a static electric field. Eigenenergies are
obtained and compared to perturbative low field and high field approximations. Analytical expressions for
the orientation parameters and for the gradient of the energy are given. This non perturbative approach
is applied to the simulation of beam deviation experiments in strong electric field. Results of simulations
are given for inhomogeneous alkali dimers. For LiNa, the simulations are compared to experimental data.
For LiK, deviation profiles have been simulated in order to prepare future experiments on this molecule.

PACS. 33.15.Kr Electric and magnetic moments (and derivatives), polarizability,
and magnetic susceptibility – 33.55.Be Zeeman and Stark effects

1 Introduction

The deviation of molecular beams in a strong inhomoge-
neous electric field has been used to measure the electric
polarizability of small molecules and clusters [1]. This is
quite straightforward for non polar molecules. The devia-
tion is due to the interaction of the electric field with the
induced dipole of the molecule. In first approximation, one
can interpret the experimental results by assuming that all
the non polar molecules are deviated by the same amount
which is proportional to the average polarizability of the
molecule [1–3]. In contrary, for molecules with a perma-
nent electric dipole, the deviation is due to the interaction
of the electric field with both the induced dipole and the
permanent dipole. This second term depends on the co-
sine of the angle θ between the molecular axis and the
direction of the electric field. It induces a broadening of
the molecular beam. This broadening has been observed
in “two-wire” electric field experiments [4–6] or multipole
electric field experiments [7–9]. The analysis of the devi-
ation has to take into account the rotational motion of
the molecule. The simplest approach is to consider the
interaction energy with the external electric field as a per-
turbation to the rotational part of the Hamiltonian and to
determine the first order and second order corrections to
the unperturbed rotational levels of the molecule [2,5,10].
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However this approach can only be applied if the interac-
tion energy with the external field is small as compared
to the rotational energy of the molecule. If not, the field
induces a significant torque on the molecule and the rota-
tional wave functions can be strongly modified. This effect
has been used to produce molecular beams with aligned
molecules in strong static field [11–16] or intense laser
field [17]. Theoretically, the energy levels and the align-
ment of linear molecules (pendular states) have been stud-
ied by Friedrich and Herschbach [16,18]. They gave non
perturbative solutions for polar-non polarizable molecules
(µ 6= 0 and α = 0) and for non polar-polarizable molecules
(µ = 0, α 6= 0). For the molecule LiNa that we have re-
cently studied in electric deviation experiments [5] and
for the electric field that we are using, the contributions
of the induced dipole and of the permanent dipole are in
the same order of magnitude and neither term can be ne-
glected. In fact, for low J values, the deviation is mainly
due to the interaction with the permanent dipole, while
the polarizability term is dominant for large J values.

In order to interpret and to predict results for exper-
iments which involved deviation of molecules in a static
electric field, we have solved the problem of a rigid rotator
in interaction with a strong electric field. This calculation
is done for polar and polarizable linear molecules (µ 6= 0
and α 6= 0). The known problems of polar-non polarizable
(µ 6= 0 and α = 0) and non polar-polarizable (µ = 0,
α 6= 0) molecules are particular cases of the present gen-
eral process. Eigenenergies and eigenfunctions as well as
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derivatives of the energy with respect to the field are ob-
tained. The values for the energy are also compared to
approximate values obtained by a perturbative method
in the low field limit and by an asymptotic expansion
in the strong field limit. We focus our numerical results
on heteronuclear alkali dimers such as LiNa for which we
have obtained experimental results [5] and LiK and LiRb
which, being by far more polar than LiNa, cannot be in-
vestigated accurately at our experimental field strength by
perturbative approaches. The non perturbative approach
is presented in Section 2. It is followed, in Section 3, by
a discussion of eigenenergies, orientation parameters and
molecular beam deviations of LiNa, LiK, and LiRb. Clos-
ing remarks are given in Section 4.

2 Theory

2.1 Eigensolutions

We consider a linear rotor in a 1Σ state interacting with
a uniform electric field ε. The molecule has a permanent
electric dipole moment µ along the molecular axis and a
static dipole polarizability with two components α‖ and
α⊥ parallel and perpendicular to the molecular axis. The
Schrödinger equation is:

Hψ = Eψ (1)

with H = BJ2 + Vα(θ) + Vµ(θ). (2)

The first term in the right hand of equation (2) is the
free rotational Hamiltonian of the molecule. The second
and third terms are the potential parts of the Hamiltonian
due to the induced and permanent dipole moment in the
external field ε:

Vµ(θ) = −µε cos θ, (3)

Vα(θ) = −ε
2

2
((α‖ − α⊥) cos2 θ + α⊥). (4)

In equations (2–4) J is the angular momentum vector,
B the rotational constant, θ the polar angle between the
molecular axis and the electric field direction. E and Ψ
are the eigenenergy and eigenfunction to be determined.

The expression for J2 in spherical coordinates is:

J2 = −
[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
(5)

ϕ is the azimuthal angle. Equation (1) is separable and
the wavefunction may be factorized:

ψ(θ, ϕ) = e±iMϕφ(θ) (6)

where M is a good quantum number.
The Schrödinger equation obtained from equation (2)

reduces to a spheroidal wave equation:[
d
dz

(1− z2)
d
dz
− M2

1− z2
+∆ωz2 + ωz + λ

]
φ(θ) = 0

(7)

where z = cos θ.
The dimensionless parameters ∆ω and ω are given by:

∆ω =
(α‖ − α⊥)ε2

2B
(positive for linear systems) (8)

ω =
µε

B
· (9)

The energy is given by:

λ = ω⊥ +
E

B
with ω⊥ =

α⊥ε2

2B
· (10)

For ∆ω = 0 and ω = 0, the eigenfunctions coincide
with the spherical harmonics YMJ and the eigenvalues are
EJ,M/B = J(J + 1)− ω⊥.

If the terms of interaction with the electric field are
small compared to the rotational term, the eigenenergies
and the eigenfunctions can be estimated with a perturba-
tive approach [2,5,10,19]. In the low electric field limit,
the perturbative energy for a level J , M is given by:(
E

B

)
pert.

= J(J + 1)− ω⊥ −
∆ω

3

+
[

ω2

2J(J + 1)
− 2

∆ω

3

][
J(J + 1)− 3M2

(2J + 3)(2J − 1)

]
· (11)

On the other hand, if the rotational energy is small as
compared to the terms due to the interaction with the
electric field, the rotation is blocked. In the high field limit,
the energy of the system tends toward the energy of a two-
dimensional harmonic oscillator. The formula for (µ 6=
0, α = 0) and (µ = 0, α 6= 0) are given by Friedrich
and Herschbach in reference [19]. Here, for (µ 6= 0, α 6=
0) using the asymptotic expansion method described in
reference [20] we obtain:(
E

B

)
osc.

= −ω −∆ω − ω⊥ + (2J̃ −M + 1)
√

2ω + 4∆ω

− ∆ω

2∆ω + ω
[(2J̃ + 1−M)2 + 1−M2]

− 1
8

ω

2∆ω + ω
[(2J̃ + 1−M)2 + 3− 3M2] + ... (12)

In the general case, the Schrödinger equation can be solved
to any accuracy by using a finite expansion of the wave
functions in terms of spherical harmonics:

ψJ̃,M(θ, ϕ) =
Jmax∑
J=M

aJ̃,MJ YMJ (θ, ϕ). (13)

For ε 6= 0 and for a linear system with µ and/or α non
zero, J is no longer a good quantum number while M
remains a good quantum number. The eigenstates are then
labeled by M and an integer J̃ . J̃ is equal to the angular
momentum J of the eigenfunction without electric field
that is adiabatically correlated to the function ψJ̃,M .
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The expansion of the wave function in terms of spher-
ical harmonics leads to the following symmetrical penta-
diagonal matrix equation:

[AA(∆ω,ω)]|a| = −λ|a|. (14)

The non vanishing elements are recalled in Appendix A.
Eigenvalues λ as well as expansion coefficients aJ̃,MJ for the
eigenfunctions are obtained by diagonalizing the matrix
[AA(∆ω,ω)]. The eigenvalues λ and the coefficients aJ̃,MJ
are functions of ω and ∆ω. In this paper, we have used the
spheroidal wave equation (Eq. (7)) to solve this problem
in order to follow the technique and the notations used
by previous authors [16,18]. The pentadiagonal matrix
(Eq. (14)) can also be obtained by projecting the Hamil-
tonian (Eqs. (1, 2)) on the spherical harmonics basis and
directly introducing the notation of the “3j” coefficients.

It should be noted that for polar-non polarizable
molecules (∆ω = 0) as well as for non polar-polarizable
molecules (ω = 0), the matrix AA reduces to a tridiagonal
form. For the latter case, AAJ,J and AAJ,J±2 terms are the
only non zero elements of the matrix. The present process
contains the two previously solved problems (µ 6= 0, α =
0) and (µ = 0, α 6= 0) as particular cases.

2.2 Alignment and orientation

For a given eigenstate described by the wavefunction
ψJ̃,M (θ, ϕ), the probability distribution of θ is given by:

nJ̃,M(θ) =
∫ 2π

0

ψ∗
J̃,M

(θ, ϕ)ψJ̃ ,M(θ, ϕ)dϕ. (15)

A second method to calculate this distribution is to ex-
pand n(θ) in terms of Legendre polynomials:

nJ̃,M(θ) =
∞∑
n=0

bn(J̃ ,M)Pn(cos θ) (16)

where

bn(J̃ ,M) =
2n+ 1

2
〈Pn(cos θ)〉J̃ ,M . (17)

The expansion coefficients bn are functions of the expec-
tation values of cosn θ over the wavefunction ψJ̃ ,M(θ, ϕ).
Analytic expressions for bn (n = 1 ... 4) are given in Ap-
pendix B. The values of 〈cos(θ)〉 and 〈cos2(θ)〉 can be in-
terpreted as orientation and alignment parameters respec-
tively [16,18].

2.3 Derivatives of eigenenergies with respect
to the electric field

In our experiments, static dipolar polarizability and/or
permanent dipole moment are obtained by measuring the
deflection of a cluster beam in an inhomogeneous electric
field. In the electric field the force g acting on the molecule

is equal to the opposite of the gradient of the energy. This
force is proportional to the gradient of the electric field
and the first derivative of the energy with respect to the
electric field:

g = −∇E = −∂E
∂ε

∂ε

∂z
· (18)

The evaluation of the first derivative of the energy with
respect to the electric field ∂E/∂ε is necessary to inter-
pret our experiments. This derivative is obtained by us-
ing the Hellman-Feynman theorem. The Hamiltonian H
(Eq. (2)) being hermitian and the wavefunctions ψJ̃ ,M be-
ing orthonormalized, the derivative ∂EJ̃,M/∂ε is given by:

∂EJ̃ ,M(ε)
∂ε

= 〈ψJ̃ ,M
∣∣∣∣∂H∂ε

∣∣∣∣ψJ̃ ,M〉, (19)

−
∂EJ̃,M(ε)

∂ε
= (α‖ − α⊥)ε〈z2〉J̃,M + µ〈z〉J̃,M + α⊥ε.

(20)

The force due to the permanent dipole is proportional
to the orientation parameter 〈z〉 and the force due to
the asymmetric part of the polarizability is proportional
to the alignment parameter 〈z2〉. The matrix elements
〈z〉J̃,M = 〈cos θ〉J̃ ,M and 〈z2〉J̃ ,M = 〈cos2 θ〉J̃ ,M are given
in Appendix B (Eqs. (B.1, B.2)).

3 Results

Calculations have been performed for the three molecules
LiNa, LiK and LiRb in their ground state X1Σ+. They re-
quire input data such as the permanent dipole µ, the com-
ponents of the static dipole polarizability α‖ and α⊥ and
the rotational constant B. B is evaluated from the equilib-
rium internuclear distance Re and the reduced molecular
mass mr:

B =
1

2mrR2
e

·

For the ground state of LiNa, we use our experimental
values of µ and α, previously deduced from the measure-
ment of the deviation of a LiNa supersonic beam in an
inhomogeneous electric field [5]. In this previous study,
we approximated the LiNa energy in the electric field by
perturbation and used the experimental value of refer-
ence [21] for Re. For the ground state of LiK and LiRb,
we have calculated Re, µ and the components α‖ and α⊥
of the static dipole polarizability in a Density Functional
Theory approach using Gaussian 94 [22]. We used the
Perdew-Wang 91 [23] functional (DFT/PW91) and the
Sadlej-Urban basis sets [24]. Values for Re, B, µ, α‖ and
α⊥ are reported in Table 1. For LiNa, calculated values
as well as experimental values are given for comparison.
Calculated values for µ and Re are in good agreement
with experimental values with a relative error δ ≈ 2%.
For the averaged polarizability ᾱ = (α‖+2α⊥)/3, δ ≈ 9%.
The values of the dimensionless reduced parameters ∆ω
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Table 1. Equilibrium distance, rotational constant, dipole moment and static dipole polarizability for LiNa, LiK and LiRb
molecules.

Molecule Re (Å) B (cm−1) µ (D) α‖ (Å3) α⊥ (Å3) ᾱ (Å3)

LiNa (a) 2.89 0.379 0.49 52.3 32.3 39.0

(b) 2.95 0.363 0.48 49.0 28.6 35.4

LiK (b) 3.39 0.249 3.27 68.5 38.7 48.6

LiRb (b) 3.51 0.213 4.40 75.6 41.6 52.9

(a) Experimental values of reference [5].

(b) Present calculated values (DFT/PW91, SU Basis).

Table 2. Values of the dimensionless parameters ∆ω, ω and
ω⊥ for an electric field ε = 2× 107 V/m−1 for LiNa, LiK and
LiRb.

∆ω =
(α‖ − α⊥)ε2

2B
ω =

µε

B
ω⊥ =

α⊥ε
2

2B

LiNa 0.059 4.34 0.095

LiK 0.134 45.74 0.174

LiRb 0.178 69.32 0.218

(Eq. (8)), ω (Eq. (9)) and ω⊥ (Eq. (10)) are reported in
Table 2 for an electric field ε = 2×107 Vm−1 for the three
molecules. While the two parameters of the induced dipole
moment increase by a factor of 2 for ω⊥ and 3 for ∆ω, the
parameter ω due to the permanent dipole increases by a
factor of 16 from LiNa to LiRb.

Table 3 compares the rotational energy of the free ro-
tor to the second order corrections in energy due to the
induced and the permanent dipoles. The corrections are
calculated using equation (11). This table shows that the
correction due to the polarizability little depends on the
rotational state of the molecule while the perturbative cor-
rection due to the permanent dipole decreases as J in-
creases. For a ratio of the potential terms with respect to
the rotational energy small compared to 1, perturbation
theory is an appropriate approach. For larger ratios per-
turbation theory fails and the non perturbative approach
is the appropriate method.

3.1 Eigenenergies

For each molecule and for the various values of the electric
field ε, eigenenergies and eigenfunctions are obtained by
diagonalizing the matrix AA for each value of M (Eq. (14)).
The non vanishing elements of this matrix are evaluated
for the molecular values of µ, α‖, α⊥ and B reported in
Table 1 with the expressions given in Appendix A.

The number of terms in the expansion of the wave
function (Eq. (13)) is determined so that eigenenergy val-
ues are stabilized to a given accuracy when increasing
Jmax. In the present calculations, we used∣∣∣∣∣

(
E

B

)
Jmax+1

−
(
E

B

)
Jmax

∣∣∣∣∣ ≤ 102

Table 3. Rotational energy of the free rotor and perturbative
corrections to this energy due the potential terms Vµ and Vα.
The corrections are evaluated for ε = 2 × 107 Vm−1 using
(Eq. (11)). These corrections are labeled Eµ and Eα. Results
are given for selected rotational levels.

J M
J(J + 1)

B

Eµ
B

Eα
B

LiNa 0 0 0 −3.15 −0.115

5 0 30 0.081 −0.13

5 5 30 −0.12 −0.10

10 0 110 0.021 −0.13

10 10 110 −0.037 −0.098

LiK 0 0 0 −348.70 −0.22

5 0 30 8.94 −0.24

5 5 30 −13.41 −0.18

10 0 110 2.39 −0.24

10 10 110 −4.13 −0.18

LiRb 0 0 0 −800.77 −0.28

5 0 30 20.53 −0.31

5 5 30 −30.80 −0.23

10 0 110 5.50 −0.31

10 10 110 −9.50 −0.23

which corresponds for J = 15, M = 0 and ε = 3 ×
108 Vm−1 to Jmax = 22 for LiNa, Jmax = 38 for LiK
and Jmax = 43 for LiRb.

Eigenenergies E/B for ε = 2 × 107 Vm−1 are given
in Table 4 for the states J̃ = 0–3, 5, 10 with M = 0 ... J̃
for the three molecules LiNa, LiK, LiRb. The energies for
the states J̃ = 0, 5, 15 are plotted as a function of ε in
Figures 1 and 2 for LiNa and LiK respectively. The corre-
sponding curves for LiRb are similar to that for LiK and
are not reported here. The main effect of the electric field
is to break the degeneracy in M . The energy of a molecule
depends on its orientation in the electric field. For LiNa
and J̃ = 15, the contribution to the energy due to the
permanent dipole and the asymmetric part of the polar-
izability are small as compared to the rotational energy
of the molecule. Moreover, for J̃ ≈ 15 they cancel each
other. In this case, the only effect of the electric field is
a small decrease in the energy of the molecule. For dif-
ferent values of J , there would be a small splitting of the
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Table 4. Exact eigenenergies E/B and perturbative values (Eq. (11)) for given J̃ and M states of LiNa, LiK and LiRb at
ε = 2× 107 Vm−1. Values calculated with the formula for high field approximation (Eq. (12)) are given for LiRb.

LiNa LiK LiRb

J̃ M Exact Perturbative Exact Perturbative Exact Perturbative High field

solution energy solution energy solution energy approximation

0 0 −2.06 −3.26 −36.97 −348.7 −58.42 −801.0 −58.59

1 0 2.51 3.76 −18.86 210.97 −35.87 482.14 −36.00

1 1.04 0.95 −27.36 −102.81 −46.60 −238.49 −46.79

2 0 6.36 6.32 −1.93 55.57 −14.46 120.08 −14.42

1 6.02 6.10 −9.78 30.68 −24.58 62.90 −24.70

2 5.46 5.45 −17.13 −44.01 −34.20 −108.64 −34.49

3 0 12.09 12.08 13.67 35.00 5.71 65.08 6.15

1 12.03 12.03 6.60 29.20 −3.72 51.74 −3.63

2 11.87 11.88 0.04 11.78 −12.62 11.72 −12.91

3 11.64 11.64 −6.15 −17.25 −21.10 −54.97 −21.70

5 0 29.96 29.96 39.38 38.70 41.60 50.22 44.23

1 29.954 29.95 35.06 37.81 33.98 48.17 35.46

2 29.93 29.93 30.90 35.13 26.96 42.02 27.20

3 29.89 29.89 26.81 30.67 20.30 31.77 19.43

4 29.84 29.84 22.76 24.43 13.88 17.42 12.16

5 29.78 29.78 18.75 16.40 7.65 −1.03 5.38

10 0 109.90 109.90 112.19 112.15 115.39 115.19 121.65

1 109.90 109.90 112.11 112.09 115.19 115.04 115.43

2 109.90 109.90 111.90 111.89 114.59 114.59 109.70

3 109.90 109.89 111.54 111.57 113.64 113.85 104.47

4 109.90 109.89 111.05 111.12 112.39 112.80 99.74

5 109.89 109.89 110.43 110.54 110.88 111.46 95.50

6 109.89 109.89 109.70 109.82 109.17 109.82 91.77

7 109.88 109.88 108.86 108.98 107.28 107.88 88.53

8 109.88 109.88 107.92 108.01 105.24 105.65 85.78

9 109.87 109.87 106.90 106.91 103.08 103.11 83.54

10 109.87 109.87 105.80 105.69 100.82 100.28 81.79

Fig. 1. Energy E/B calculated with the non perturbative ap-
proach for the states J̃ = 0, 5, 15; M = 0−J̃ of LiNa plotted as
a function of the electric field ε. The value of the experimental
electric field is indicated by the vertical dotted line.

Fig. 2. Energy E/B calculated with the non perturbative ap-
proach for the states J̃ = 0, 5, 15; M = 0−J̃ of LiK plotted as
a function of the electric field ε. The value of the experimental
electric field is indicated by the vertical dotted line.



238 The European Physical Journal D

rotational sublevels. The compensation of the two terms
would be for a different value of J for another molecule.

In Table 4, we also give the results of the perturba-
tive approach (Eq. (11)). As expected, the perturbative
approach fails when the potential terms are not small
compared to the rotational energy of the free rotor (see
Tab. 3). At ε = 2× 107 Vm−1 for LiNa, the perturbative
approximation in the low field limit cannot be used for the
states J̃ = 0, 1. For J̃ ≥ 3, the perturbative approxima-
tion is excellent and its accuracy increases with increasing
J̃ to reach δ ≈ 10−4% for J̃ = 15. It should be noted
that approximating the energy E/B with equation (11)
as we did in our previous work to deduce µ and ᾱ from
our experiments on LiNa was totally justified. The situa-
tion is not the same for LiK and LiRb. These molecules
have a stronger permanent dipole and the accuracy of the
perturbative approximation is not good.

The results of the high field approximation (Eq. (12))
are reported here (Tab. 4) only for LiRb which has the
strongest permanent dipole. For rotational levels with J̃ ≤
5, this approximation is better than the value obtained
from equation (11) and is quite good for the first rotational
levels.

3.2 Orientation parameters

In our experiment, as mentioned is Section 2, the devi-
ation of the molecules is related to the orientation and
alignment parameters in the electric field. In other exper-
iments like collision experiments with oriented molecules,
the calculation of this parameter is also needed to inter-
pret experimental results.

The expectation values of 〈cosn θ〉 for n = 1 ... 4 have
been evaluated with the formulas (B.1–B.4) for various
values of J̃ and averaged over M states:

〈cosn θ〉J̃ =
1

2J̃ + 1

J̃∑
M=−J̃

〈cosn θ〉J̃ ,M . (21)

As an illustrative example, the variation of 〈cos θ〉J̃ with
the electric field ε is plotted in Figure 3 for the states
J̃ = 0–5 of LiNa. The quantity 〈cos θ〉J̃ is strongly re-
lated to the dipolar term ω = µε/B. It measures the de-
gree of orientation of the molecule. Only polar molecules
can be oriented in a static field (Eq. (B.1)). Non polar
diatomic molecules cannot be oriented but they can be
aligned (〈cos2 θ〉J̃,M 6= 0) [18]. In Figure 3, the largest
values of 〈cos θ〉J̃ are obtained for J̃ = 0. Orientation for
J̃ ≥ 5 at the displayed range of field strength is negligible.

To study the molecular orientation, it is convenient to
display the distribution n(θ) for a given electric field. The
distribution of the molecular axis n(θ) (Eq. (15)) averaged
over states M has been calculated for ε = 2 × 107 Vm−1

and J̃ = 1, 3, 5. Results for LiNa and LiK are displayed in
Figures 4 and 5, respectively. As discussed above, for low
values of J̃ , the electric field induces an orientation of the
molecule along the z-axis (electric field axis). For LiNa,

Fig. 3. Averaged value 〈cos θ〉J̃ for some states of LiNa plotted
as a function of the electric field ε. The value of the experimen-
tal electric field is indicated by the vertical dotted line.

Fig. 4. Averaged angular distribution of the molecular axis
for the states J̃ = 1, 3, 5 of LiNa (calculations are done for ε =
2× 107 Vm−1). Full lines correspond to the exact calculation
(Eq. (15)) and dots to the values obtained from the Legendre
expansion (Eq. (16), 4th order) .

Fig. 5. Same as Figure 4 for the states J̃ = 1, 3, 5 of LiK.
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Fig. 6. Derivative of the energy with respect to the electric
field (Eq. (20)) for the states J̃ = 0, 5, 10, 15 of LiNa. The
sublevels M are indicated by the notation (J̃ ,M). The value
of the experimental electric field is indicated by the vertical
dotted line.

orientation occurs for J̃ = 1, but for J̃ = 3 and J̃ = 5,
the distribution is flat. For LiK, the orientation around
θ = 0 occurs for J̃ = 1, 3, 5. For this molecule and for
these states, the value of µε is greater than the rotational
energy of the molecule (ω � 1). The rotation is hindered.
In Figures 4 and 5, we have also plotted the distribu-
tion obtained from the expansion in Legendre polynomials
(Eq. (16)). For both molecules, expansions to the fourth
order are a good representation of the exact distributions
for the value of the electric field considered here. Conver-
gence of (Eq. (16)) was considered for the state J̃ = 1 of
LiK. A reasonable description has to include terms up to
〈cos3 θ〉J̃ .

3.3 Derivatives of the energy

The derivative of the energy with respect to the electric
field corresponds to the quantity which is measured in
beam deviation experiments. In an inhomogeneous elec-
tric field, the force on the molecule is proportional to this
derivative (Eq. (18)). The energy gradient with respect to
field strength (−∂E/∂ε) for LiNa is reported in Figure 6
for selected states. The derivative depends strongly on the
rotational level of the molecule. For J̃ = 0, the derivative
increases rapidly with the value of the electric field. For
rotational states of low J̃ values, the force due to the in-
homogeneous electric field will induce a separation of the
different M sublevels. For states with J̃ ≥ 10, the value
of the derivative is mainly due to the term proportional
to the average polarizability. This term does not depend
on the values of J̃ or M . For J̃ ≥ 10, the force will little
depend on the rotational level of the molecule. Moreover,
for all the states with J̃ ≥ 2, there is no orientation of the
molecule in the electric field (see Figs. 3 and 4, Tab. 4),
the perturbative approach is correct and the evolution of
the value of (−∂E/∂ε) is linear with the electric field.
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Fig. 7. Same as Figure 6 for LiK (vertical scales in Figs. 6 and
7 are different).

The derivative of the energy with respect to the electric
field (−∂E/∂ε) is plotted in Figure 7 for several states of
the molecule LiK. For LiK, the force is mainly due to
the interaction of the electric field with the permanent
dipole. Several differences between Figures 6 and 7 are
observed. First, note that the vertical scales in the two
figures are different. The derivative (−∂E/∂ε) and then
the forces on this molecule are more than one order of
magnitude larger than for the molecule LiNa. Second, for
LiK the orientation of the molecules cannot be neglected.
For J̃ = 0 and an electric field strength of the order of
107 Vm−1, (−∂E/∂ε) is almost constant. LiK molecules
in J̃ = 0 state are strongly oriented. The derivative which
is here in first approximation equal to µ〈cos θ〉 does not
depend on the value of ε. For J̃ = 5, the derivative of the
energy for several sublevels is negative. These sublevels
are anti-oriented (〈cos θ〉J̃,M < 0) and the molecules will
be deviated toward the low electric field region.

3.4 Deflection of molecular beam

In this section we simulate experimental data of a de-
flected molecular beam of LiNa [5] on the basis of the
above outlined procedure. The experimental set up and
results are described in reference [5]. Briefly, the LiNa
molecules are produced in a seeded molecular beam. The
molecular beam is collimated by two slits. It is deviated
1 m after the source in a 15 cm long deflector which pro-
duces a strong inhomogeneous electric field. The experi-
mental value of the electric field on the beam axis is equal
to ε = 1.7 × 107 Vm−1. The molecules are excited and
ionized (Two Photons Ionization technique) 1 m after the
deflector in the extraction region of a time of flight mass
spectrometer. The deviation d is measured in the region
of ionization (see Ref. [5] for details). The force (Eq. (18))
and the deviation d of the beam are proportional to the
gradient of the energy of the molecule in the electric field:

d = − K

2mv2
∇E = − K

2mv2

∂E

∂ε

∂ε

∂z
(22)
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Fig. 8. Beam deflection profiles for J = 4, 5, 6 levels of the
molecule NaLi with and without electric field in the deviator:
experimental data (full lines), simulation obtained from the
derivative of the energy (dashed lines).
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Fig. 9. Same as Figure 8 for J = 12, 13, 14 levels.

m and v are the mass and the velocity of the molecules,
K is a geometrical factor and z is the direction of the
electric field. The molecules are excited and ionized with
XeCl pumped dye lasers. The first photon is resonant on
the B1Π(v′ = 7)← X1Σ(v′′ = 0) vibronic transition. This
allows to select a single or a few rotational states of the
molecule. Profiles of the molecular beam measured with
and without electric field in the deflector for molecules
with low rotational angular momentum (J = 4, 5, 6) and
for molecules with high angular momentum (J = 12, 13,
14) are given in Figures 8 and 9. For low J values, the
electric field induces a shift and a broadening of the beam.
For high J values, the only effect of the electric field is a
shift of the molecular beam.

Calculated deviations are obtained from the derivative
of the eigenenergies and using (Eq. (22)). To compare cal-
culated profiles to experimental profiles, a Gaussian profile
in the z-direction is assumed for the shape of the beam
before the deflection. Figures 8 and 9 show an excellent
agreement between calculated and experimental profiles.

Fig. 10. Simulation of a beam deflection profile for J = 5
levels of the molecule LiK with and without electric field in
the deviator.

In particular, the broadening of the beam for low J values
is well reproduced. The broadening is due to the poten-
tial term Vµ. For large values of J , the influence of this
term decreases (see Tab. 3) and no significant broadening
is expected (see Fig. 6).

Figure 10 shows the calculated deviations for the LiK
molecule for J = 5. As already mentioned, the effect of
the electric field is much stronger for LiK than for LiNa.
The term due to the permanent dipole is larger for LiK
than for LiNa ((ω)LiK/(ω)LiNa ≈ 16). For low J value,
the electric field would induce a strong spreading of the
beam with a separation of the different sublevels. Each
peak in Figure 10 corresponds to a given Stark sublevel
of the molecule (a well defined |M | value). Due to the
anti-orientation of some sublevels, the beam is spread in
both directions in the deflector (toward high and low elec-
tric field regions). Beyond the determination of the values
of the static polarizability and the permanent dipole, the
profile of deviation gives a picture of the orientation of the
molecule due to the electric field in the deviator. Moreover,
as this has already been shown with four-wire alternate
electrical fields [9], it is also possible to use such experi-
mental set up to select a rotational state of the molecule.
Figure 11 shows the deviation profile obtained by includ-
ing the entire rotational distribution of the LiK molecules
in the beam for a rotational temperature of 10 K. For
this temperature and this molecule, rotational states with
J < 10 are the only one with a significant population.
The peaks corresponding to the low values of J (J < 6)
are well separated in space. This figure shows that it is
possible to use our experimental set up to select one given
stark sublevel of a molecule and to perform experiments
on the selected level. The rotational state selection can be
applied to any molecule with dimensionless parameter ω
(for ε = 1.7× 107 Vm−1) equal or larger to that of LiK.
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Fig. 11. Simulation of the profile of deviation obtained by in-
cluding the entire rotational distribution of the LiK molecules
in the beam for a rotational temperature of 10 K. All the pa-
rameters used for this simulation correspond to our experimen-
tal conditions.

4 Conclusion

A non perturbative approach is used to solve the problem
of a polar and polarizable linear molecule in an inhomo-
geneous electric field, in the assumption of a rigid rotator
model. Eigenenergies and eigenfunctions are obtained by
diagonalizing a symmetrical pentadiagonal matrix. The
derivative of the eigenenergies with respect to the electric
field is evaluated using the Hellman-Feynman theorem.
This calculation gives a tool to interpret and predict beam
deflection experiments of polar and polarizable molecules.

Results have been presented for the three molecules
LiNa, LiK and LiRb which, with respect to the problem
solved here, differ mainly by the value of their permanent
dipole. Simulations show that it is possible to use our ex-
perimental set up to work on selected rotational levels of
the molecule.

Appendix A: Elements of the symmetrical
pentadiagonal matrix [A(∆ω,ω)]

The matrix elements of [AA(∆ω,ω)] for a given value of
M are:

AAJ,J (∆ω,ω) = −J(J + 1)+∆ω
(

2J2−2M2+2J−1
(2J + 3)(2J − 1)

)

AAJ,J+1(∆ω,ω) = AAJ+1,J (∆ω,ω)

= ω

(
(J +M + 1)(J −M + 1)

(2J + 3)(2J + 1)

)1/2

AAJ,J+2(∆ω,ω) = AAJ+2,J (∆ω,ω) =
∆ω

2J + 3

×
(

(J+M+ 1)(J−M+ 1)(J+M+ 2)(J−M+ 2)
(2J + 1)(2J + 5)

)1/2

AAJ,J+l(∆ω,ω) = AAJ+l,J (∆ω,ω) ≡ 0 for l ≥ 3

with J ≡M ... Jmax and ∆ω =
(α‖ − α⊥)ε2

2B
, ω =

µε

B
.

Appendix B: Average values 〈cosnθ〉J̃;M
for n =1 ... 4

〈cos θ〉J̃,M = 2
∞∑

J=M

aJaJ+1A(J) (B.1)

〈cos2 θ〉J̃ ,M = 2
∞∑

J=M

aJaJ+2A(J)A(J + 1)

+
∞∑

J=M

aJaJ{A2(J) +A2(J − 1)} (B.2)

〈cos3 θ〉J̃ ,M = 2
∞∑

J=M

aJaJ+3A(J)A(J + 1)A(J + 2)

+ 2
∞∑

J=M

aJaJ+1A(J){A2(J − 1) +A2(J) +A2(J + 1)}

(B.3)

〈cos4 θ〉J̃ ,M = 2
∞∑

J=M

aJaJ+4A(J)A(J+1)A(J+2)A(J+3)

+2
∞∑

J=M

aJaJ+2A(J)A(J+1){A2(J)+A2(J+1)+A2(J+2)}

+
∞∑

J=M

aJaJ
[
A2(J){A2(J − 1) +A2(J) +A2(J + 1)}

+A2(J − 1){A2(J − 2) +A2(J − 1) +A2(J)}
]
. (B.4)

In formulas (B.1–B.4), the shortened notation aJ ≡ aJ̃,MJ
has been used.

The function A(J) is defined by:

A(J) =
[

(J + 1−M)(J + 1 +M)
(2J + 1)(2J + 3)

]1/2

with A(J < 0) = 0. (B.5)
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